Utilization of artificial intelligence in Men’s Health: Opportunities for innovation and quality improvement

0
Utilization of artificial intelligence in Men’s Health: Opportunities for innovation and quality improvement
  • Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J. 2021;8:e188–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Venishetty N, Alkassis M, Raheem O. The role of artificial intelligence in male infertility: evaluation and treatment: a narrative review. Uro. 2024;4:23–35.

    Article 

    Google Scholar 

  • Mouhawasse E, Haff CW, Kumar P, Lack B, Chu K, Bansal U, et al. Can AI chatbots accurately answer patient questions regarding vasectomies? Int J Impot Res. 2024;1–3. https://doi.org/10.1038/s41443-024-00970-y.

  • Razdan S, Siegal AR, Brewer Y, Sljivich M, Valenzuela RJ. Assessing chatGPT’s ability to answer questions pertaining to erectile dysfunction: can our patients trust it? Int J Impot Res. 2024;36:734–40.

    Article 
    PubMed 

    Google Scholar 

  • Sarker IH. Machine learning: algorithms, real-world applications and research directions. Sn Comput Sci. 2021;2:160.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agarwal A, Henkel R, Huang CC, Lee MS. Automation of human semen analysis using a novel artificial intelligence optical microscopic technology. Andrologia. 2019;51:e13440.

    Article 
    PubMed 

    Google Scholar 

  • Shah M, Naik N, Somani BK, Hameed BZ. Artificial intelligence (AI) in urology-current use and future directions: an iTRUE study. Turk J Urol. 2020;46:S27–39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanassab S, Nelson SM, Akbarov A, Yeung AC, Hramyka A, Alhamwi T, et al. Explainable artificial intelligence to identify follicles that optimize clinical outcomes during assisted conception. Nat Commun. 2025;16:296.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mora-Sánchez A, Aguilar-Salvador DI, Nowak I. Towards a gamete matching platform: using immunogenetics and artificial intelligence to predict recurrent miscarriage. Npj Digit Med. 2019;2:1–6.

    Article 

    Google Scholar 

  • Tsai VF, Zhuang B, Pong YH, Hsieh JT, Chang HC. Web- and artificial intelligence–based image recognition for sperm motility analysis: verification study. JMIR Med Inform. 2020;8:e20031.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung PH, Han TM, Rudnik B, Das AK. Peyronie’s disease: what do we know and how do we treat it? Can J Urol. 2020;27:11–9.

    PubMed 

    Google Scholar 

  • Muneer A. Hypogonadism: an underdiagnosed condition. Trends Urol Gynaecol Sex Health. 2010;15:14–7.

    Article 

    Google Scholar 

  • Baldwin K, Ginsberg P, Harkaway RC. Under-reporting of erectile dysfunction among men with unrelated urologic conditions. Int J Impot Res. 2003;15:87–9.

    Article 
    PubMed 

    Google Scholar 

  • Liang Y, Huang J, Zhao Q, Mo H, Su Z, Feng S, et al. Global, regional, and national prevalence and trends of infertility among individuals of reproductive age (15–49 years) from 1990–2021, with projections to 2040. Hum Reprod Oxf Engl. 2025;40:529–44.

    Article 

    Google Scholar 

  • Leung AK, Henry MA, Mehta A. Gaps in male infertility health services research. Transl Androl Urol. 2018;7:S303–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eisenberg ML, Esteves SC, Lamb DJ, Hotaling JM, Giwercman A, Hwang K, et al. Male infertility. Nat Rev Dis Primer. 2023;9:49.

    Article 

    Google Scholar 

  • Olisa NP, Campo-Engelstein L, Martins Da Silva S. Male infertility: what on earth is going on? Pilot international questionnaire study regarding clinical evaluation and fertility treatment for men. Reprod Fertil. 2022;3:207–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carlsen E, Giwercman A, Keiding N, Skakkebaek NE. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992;305:609–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levine H, Jørgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Jolles M, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum Reprod Update. 2023;29:157–76.

    Article 
    PubMed 

    Google Scholar 

  • Sengupta P, Dutta S, Krajewska-Kulak E. The disappearing sperms: analysis of reports published between 1980 and 2015. Am J Mens Health. 2017;11:1279–304.

    Article 
    PubMed 

    Google Scholar 

  • CDC. National ART summary. 2024 [cited 2024 Dec 17]. Available from: https://www.cdc.gov/art/reports/2021/summary.html.

  • Gatimel N, Moreau J, Parinaud J, Léandri RD. Sperm morphology: assessment, pathophysiology, clinical relevance, and state of the art in 2017. Andrology. 2017;5:845–62.

    Article 
    PubMed 

    Google Scholar 

  • Bijar A, Benavent AP, Mikaeili M, Khayati R. Fully automatic identification and discrimination of sperm’s parts in microscopic images of stained human semen smear. J Biomed Sci Eng. 2012;05:384–95.

    Article 

    Google Scholar 

  • Bartoov B, Berkovitz A, Eltes F, Kogosowski A, Menezo Y, Barak Y. Real‐time fine morphology of motile human sperm cells is associated with IVF‐ICSI outcome. J Androl. 2002;23:1–8.

    Article 
    PubMed 

    Google Scholar 

  • Björndahl L, Kirkman Brown J. The sixth edition of the WHO laboratory manual for the examination and processing of human semen: ensuring quality and standardization in basic examination of human ejaculates. Fertil Steril. 2022;117:246–51.

    Article 
    PubMed 

    Google Scholar 

  • Czubaszek M, Andraszek K, Banaszewska D, Walczak-Jędrzejowska R. The effect of the staining technique on morphological and morphometric parameters of boar sperm. PLOS ONE. 2019;14:e0214243.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Butola A, Popova D, Prasad DK, Ahmad A, Habib A, Tinguely JC, et al. High spatially sensitive quantitative phase imaging assisted with deep neural network for classification of human spermatozoa under stressed condition. Sci Rep. 2020;10:13118.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sahoo AJ, Kumar Y. Seminal quality prediction using data mining methods. Technol Health Care. 2014;22:531–45.

    Article 
    PubMed 

    Google Scholar 

  • Ilhan HO, Serbes G, Aydin N. Automated sperm morphology analysis approach using a directional masking technique. Comput Biol Med. 2020;122:103845.

    Article 
    PubMed 

    Google Scholar 

  • Finelli R, Leisegang K, Tumallapalli S, Henkel R, Agarwal A. The validity and reliability of computer-aided semen analyzers in performing semen analysis: a systematic review. Transl Androl Urol. 2021;10:3069–79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yibre AM, Koçer B. Semen quality predictive model using feed forwarded neural network trained by learning-based artificial algae algorithm. Eng Sci Technol Int J. 2021;24:310–8.

    Google Scholar 

  • Parrella A, Rubio Riquelme N, Van Os Galdos LA, Vilella Amorós I, Jiménez Gadea M, Aizpurua J. P-110 a novel artificial intelligence microscopy: mojo AISA, the new way to perform semen analysis. Hum Reprod. 2022;37:deac107.106.

    Article 

    Google Scholar 

  • Salih M, Austin C, Warty RR, Tiktin C, Rolnik DL, Momeni M, et al. Embryo selection through artificial intelligence versus embryologists: a systematic review. Hum Reprod Open. 2023;2023:hoad031.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berntsen J, Rimestad J, Lassen JT, Tran D, Kragh MF. Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences. PloS ONE. 2022;17:e0262661.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borna MR, Sepehri MM, Maleki B. An artificial intelligence algorithm to select most viable embryos considering current process in IVF labs. Front Artif Intell. 2024;7:1375474.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • GhoshRoy D, Alvi PA, Santosh KC. Explainable AI to predict male fertility using extreme gradient boosting algorithm with SMOTE. Electronics. 2023;12:15.

    Article 

    Google Scholar 

  • Javadi S, Mirroshandel SA. A novel deep learning method for automatic assessment of human sperm images. Comput Biol Med. 2019;109:182–94.

    Article 
    PubMed 

    Google Scholar 

  • Yüzkat M, Ilhan HO, Aydin N. Multi-model CNN fusion for sperm morphology analysis. Comput Biol Med. 2021;137:104790.

    Article 
    PubMed 

    Google Scholar 

  • Agarwal A, Baskaran S, Parekh N, Cho CL, Henkel R, Vij S, et al. Male infertility. Lancet Lond Engl. 2021;397:319–33.

    Article 

    Google Scholar 

  • AlZoubi O, Abu Awad M, Abdalla AM, Samrraie L. Varicocele detection in ultrasound images using deep learning. Multimed Tools Appl. 2024;83:63617–34.

    Article 

    Google Scholar 

  • Kayra MV, Şahin A, Toksöz S, Serindere M, Altıntaş E, Özer H, et al. Machine learning-based classification of varicocoele grading: a promising approach for diagnosis and treatment optimization. Andrology. 2024. https://doi.org/10.1111/andr.13776.

  • Ory J, Tradewell MB, Blankstein U, Lima TF, Nackeeran S, Gonzalez DC, et al. Artificial intelligence based machine learning models predict sperm parameter upgrading after varicocele repair: a multi-institutional analysis. World J Mens Health. 2022;40:618–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crafa A, Russo M, Cannarella R, Gül M, Compagnone M, Mongioì LM, et al. Predictability of varicocele repair success: preliminary results of a machine learning-based approach. Asian J Androl. 2024;27:52–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pellegrino F, Sjoberg DD, Tin AL, Benfante NE, Briganti A, Montorsi F, et al. Relationship between age, comorbidity, and the prevalence of erectile dysfunction. Eur Urol Focus. 2022;9:162.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin H, Zhao L, Wu H, Cao M, Jiang H. Sexual life and medication taking behaviours in young men: an online survey of 92 620 respondents in China. Int J Clin Pract. 2020;74:e13417.

    Article 
    PubMed 

    Google Scholar 

  • Şahin MF, Ateş H, Keleş A, Özcan R, Doğan Ç, Akgül M, et al. Responses of five different artificial intelligence chatbots to the top searched queries about erectile dysfunction: a comparative analysis. J Med Syst. 2024;48:38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baturu M, Solakhan M, Kazaz TG, Bayrak O. Frequently asked questions on erectile dysfunction: evaluating artificial intelligence answers with expert mentorship. Int J Impot Res. 2025;37:310–4.

    Article 
    PubMed 

    Google Scholar 

  • Chen XY, Lu WT, Zhang D, Tan MY, Qin X. Development and validation of a prediction model for ED using machine learning: according to NHANES 2001–2004. Sci Rep. 2024;14:27279.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Glavaš S, Valenčić L, Trbojević N, Tomašić AM, Turčić N, Tibauth S, et al. Erectile function in cardiovascular patients: its significance and a quick assessment using a visual-scale questionnaire. Acta Cardiol. 2015;70:712–9.

    Article 
    PubMed 

    Google Scholar 

  • Chen YF, Lin CS, Hong CF, Lee DJ, Sun C, Lin HH. Design of a clinical decision support system for predicting erectile dysfunction in men using NHIRD dataset. IEEE J Biomed Health Inform. 2019;23:2127–37.

    Article 
    PubMed 

    Google Scholar 

  • Oh JH, Kerns S, Ostrer H, Powell SN, Rosenstein B, Deasy JO. Computational methods using genome-wide association studies to predict radiotherapy complications and to identify correlative molecular processes. Sci Rep. 2017;7:43381.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasannejadasl H, Roumen C, Poel van der H, Vanneste B, Roermund van J, Aben K, et al. Development and external validation of multivariate prediction models for erectile dysfunction in men with localized prostate cancer. PLOS ONE. 2023;18:e0276815.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agochukwu-Mmonu N, Murali A, Wittmann D, Denton B, Dunn RL, Montie J, et al. Development and validation of dynamic multivariate prediction models of sexual function recovery in patients with prostate cancer undergoing radical prostatectomy: results from the MUSIC statewide collaborative. Eur Urol Open Sci. 2022;40:1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saikali S, Reddy S, Gokaraju M, Goldsztein N, Dyer A, Gamal A, et al. Development and assessment of an AI-based machine learning model for predicting urinary continence and erectile function recovery after robotic-assisted radical prostatectomy: insights from a prostate cancer referral center. Comput Methods Programs Biomed. 2025;259:108522.

    Article 
    PubMed 

    Google Scholar 

  • Rew KT, Heidelbaugh JJ. Erectile dysfunction. Am Fam Physician. 2016;94:820–7.

    PubMed 

    Google Scholar 

  • Gorek M, Stief CG, Hartung C, Jonas U. Computer-assisted interpretation of electromyograms of corpora cavernosa using fuzzy logic. World J Urol. 1997;15:65–70.

    Article 
    PubMed 

    Google Scholar 

  • Kellner B, Stief CG, Hinrichs H, Hartung C. Computerized classification of corpus cavernosum electromyogram signals by the use of discriminant analysis and artificial neural networks to support diagnosis of erectile dysfunction. Urol Res. 2000;28:6–13.

    Article 
    PubMed 

    Google Scholar 

  • Kim YH. Artificial intelligence in medical ultrasonography: driving on an unpaved road. Ultrasonography. 2021;40:313.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li L, Fan W, Li J, Li Q, Wang J, Fan Y, et al. Abnormal brain structure as a potential biomarker for venous erectile dysfunction: evidence from multimodal MRI and machine learning. Eur Radiol. 2018;28:3789–800.

    Article 
    PubMed 

    Google Scholar 

  • Smerina DR, Pearlman AM. The intersection of artificial intelligence, wearable devices, and sexual medicine. Curr Urol Rep. 2024;26:14.

    Article 
    PubMed 

    Google Scholar 

  • Ogrinc FG, Linet OI. Evaluation of real-time RigiScan monitoring in pharmacological erection. J Urol. 1995;154:1356–9.

    Article 
    PubMed 

    Google Scholar 

  • Heo Y, Kim J, Cha C, Shin K, Roh J, Jo J. Wearable E-textile and CNT sensor wireless measurement system for real-time penile erection monitoring. Sensors. 2021;22:231.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Konstantinidis DRCV, Alexandrou S, Alexandrou M, Raheem AA. Adam sensor: a novel nocturnal penile tumescence wearable device – technology overview & applications. J Sex Med. 2022;19:S133–4.

    Article 

    Google Scholar 

  • Sng CMN, Wee LMC, Tang KC, Lee KCJ, Wu QH, Yeo JC, et al. Wearable soft microtube sensors for quantitative home-based erectile dysfunction monitoring. Sensors. 2022;22:9344.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saffati G, Orozco Rendon D, Daily R, Khera M, Justin E. (039) Erection duration and firmness: a descriptive analysis from a population-based study. J Sex Med. 2024;21:qdae161.032.

    Article 

    Google Scholar 

  • Lange M, Charles D, Kazeem A, Jones M, Sun F, Ghosal S, et al. Is low-intensity shockwave therapy for erectile dysfunction a durable treatment option?-long-term outcomes of a randomized sham-controlled trial. Transl Androl Urol. 2024;13:2194–200.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee M, Sharifi R. Non-invasive management options for erectile dysfunction when a phosphodiesterase type 5 inhibitor fails. Drugs Aging. 2018;35:175–87.

    Article 
    PubMed 

    Google Scholar 

  • Jang I, Lee JU, Lee JM, Kim BH, Moon B, Hong J, et al. LC–MS/MS software for screening unknown erectile dysfunction drugs and analogues: artificial neural network classification, peak-count scoring, simple similarity search, and hybrid similarity search algorithms. Anal Chem. 2019;91:9119–28.

    Article 
    PubMed 

    Google Scholar 

  • Yang R, Liu C, Li Q, Wang W, Wu B, Chen A, et al. Artificial intelligence based identification of the functional role of hirudin in diabetic erectile dysfunction treatment. Pharmacol Res. 2021;163:105244.

    Article 
    PubMed 

    Google Scholar 

  • Furtado TP, Osadchiy V, Eleswarapu SV. The promise of artificial intelligence in Peyronie’s disease. Curr Urol Rep. 2025;26:3.

    Article 

    Google Scholar 

  • Al-Thakafi S, Al-Hathal N. Peyronie’s disease: a literature review on epidemiology, genetics, pathophysiology, diagnosis and work-up. Transl Androl Urol. 2016;5:280–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levine LA. Advancements and challenges in Peyronie’s disease: a personal journey and current perspectives. Int J Impot Res. 2024;36:105–6.

    Article 
    PubMed 

    Google Scholar 

  • Baray SB, Abdelmoniem M, Mahmud S, Kabir S, Faisal MAA, Chowdhury MEH, et al. Automated measurement of penile curvature using deep learning-based novel quantification method. Front Pediatr. 2023;11:1149318.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abbas TO, AbdelMoniem M, Chowdhury MEH. Automated quantification of penile curvature using artificial intelligence. Front Artif Intell. 2022;5:954497.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker DT, Jiang T, Santamaria A, Osadchiy V, Daniels D, Sturm RM, et al. 3D-printed phantoms to quantify accuracy and variability of goniometric and volumetric assessment of Peyronie’s disease deformities. Int J Impot Res. 2022;34:786–9.

    Article 
    PubMed 

    Google Scholar 

  • Siapno AED, Yi BC, Daniels D, Bolagani A, Kwan L, Walker D, et al. Measurement accuracy of 3-Dimensional mapping technologies versus standard goniometry for angle assessment. J Pediatr Urol. 2020;16:547–54.

    Article 
    PubMed 

    Google Scholar 

  • Tostain JL, Blanc F. Testosterone deficiency: a common, unrecognized syndrome. Nat Clin Pract Urol. 2008;5:388–96.

    Article 
    PubMed 

    Google Scholar 

  • David J, Charles A. Barriers to diagnosis and accessing effective treatment and support for testosterone deficiency. J Mens Health. 2024;20:62–71.

    Google Scholar 

  • Hartman-Kenzler J, Torres J, Alami-Harandi A, Miller C, Park J, Berg W. MP47-13 CHATGPT explains testosterone therapy: accurate answers with questionable references. J Urol. 2024;211:e768.

    Article 

    Google Scholar 

  • Pabla H, Lange A, Nadiminty N, Sindhwani P. Responses of artificial intelligence chatbots to testosterone replacement therapy: patients beware! Société Int D’Urologie J. 2025;6:13.

    Article 

    Google Scholar 

  • Kim JW, Moon DG. Optimizing aging male symptom questionnaire through genetic algorithms based machine learning techniques. World J Mens Health. 2020;39:139.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • American Urological Association. Testosterone deficiency guideline. 2024 [cited 2025 Jan 21]. Available from: https://www.auanet.org/guidelines-and-quality/guidelines/testosterone-deficiency-guideline.

  • Lu T, Hu YH, Tsai CF, Liu SP, Chen PL. Applying machine learning techniques to the identification of late-onset hypogonadism in elderly men. SpringerPlus. 2016;5:729.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Novaes MT, Ferreira de Carvalho OL, Guimarães Ferreira PH, Nunes Tiraboschi TL, Silva CS, Zambrano JC, et al. Prediction of secondary testosterone deficiency using machine learning: a comparative analysis of ensemble and base classifiers, probability calibration, and sampling strategies in a slightly imbalanced dataset. Inform Med Unlocked. 2021;23:100538.

    Article 

    Google Scholar 

  • Şahin MF, Keleş A, Özcan R, Doğan Ç, Topkaç EC, Akgül M, et al. Evaluation of information accuracy and clarity: chatGPT responses to the most frequently asked questions about premature ejaculation. Sex Med. 2024;12:qfae036.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Athanasiadis L. Premature ejaculation: is it a biogenic or a psychogenic disorder? J Sex Marital Ther. 1998;13:241–55.

    Article 

    Google Scholar 

  • Anıl H, Kayra MV. The digital dialogue on premature ejaculation: evaluating the efficacy of artificial intelligence-driven responses. Int Urol Nephrol. 2025. https://doi.org/10.1007/s11255-025-04461-x.

  • Carlson JA, Cheng RZ, Lange A, Nagalakshmi N, Rabets J, Shah T, et al. Accuracy and readability of artificial intelligence chatbot responses to vasectomy-related questions: public beware. Cureus. 2024;16:e67996.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung D, Sidhom K, Dhillon H, Bal DS, Fidel MG, Jawanda G, et al. Real-world utility of chatGPT in pre-vasectomy counselling, a safe and efficient practice: a prospective single-centre clinical study. World J Urol. 2024;43:32.

    Article 
    PubMed 

    Google Scholar 

  • Esmaeilzadeh P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: a perspective for healthcare organizations. Artif Intell Med. 2024;151:102861.

    Article 
    PubMed 

    Google Scholar 

  • Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23:689.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maleki Varnosfaderani S, Forouzanfar M. The role of AI in hospitals and clinics: transforming healthcare in the 21st century. Bioengineering. 2024;11:337.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • American Urological Association. Guidelines & quality. 2025 [cited 2025 Jan 4]. Available from: https://www.auanet.org/guidelines-and-quality.

  • Rodler S. Artificial intelligence importance of guidelines to ensure transparency and reproducibility of artificial intelligence interventions – American urological association. 2024 [cited 2024 Nov 18]. Available from: https://auanews.net/issues/articles/2024/february-extra-2024/artificial-intelligence-importance-of-guidelines-to-ensure-transparency-and-reproducibility-of-artificial-intelligence-interventions.

  • American Medical Association. AMA: physicians enthusiastic but cautious about health care AI. 2023 [cited 2024 Nov 3]. Available from: https://www.ama-assn.org/press-center/press-releases/ama-physicians-enthusiastic-cautious-about-health-care-ai.

  • Laitinen A, Sahlgren O. AI systems and respect for human autonomy. Front Artif Intell. 2021;4:705164.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murdoch B. Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Med Ethics. 2021;22:122.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mittermaier M, Raza MM, Kvedar JC. Bias in AI-based models for medical applications: challenges and mitigation strategies. Npj Digit Med. 2023;6:1–3.

    Article 

    Google Scholar 

  • Dankwa-Mullan I. Health equity and ethical considerations in using artificial intelligence in public health and medicine. Prev Chronic Dis. 2024;21:E64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ali S, Abuhmed T, El-Sappagh S, Muhammad K, Alonso-Moral JM, Confalonieri R, et al. Explainable artificial intelligence (XAI): what we know and what is left to attain trustworthy artificial intelligence. Inf Fusion. 2023;99:101805.

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *